
Technical Reference
Release 0.1

Carsten Thiel, Michelle Rodzis, Yoann Moranville

Mar 19, 2019





Contents:

1 Developer Guidelines 3
1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The README . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Operational Guidelines 7
2.1 Basic Operational Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Infrastructure Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Documentation for (virtual) servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Incidents and Postmortems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Policy Recommendations 11
3.1 Code Hosting Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Release policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Software Quality Checklist 13
4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Glossary 15

Bibliography 17

i



ii



Technical Reference, Release 0.1

This is the technical reference for the DARIAH Infrastructure. It is a collection of basic guidelines and references
for development and maintenance of infrastructure services within DARIAH and beyond. This work relies heavily on
work by the community and in particular CESSDA ERIC, CLARIAH-NL, DARIAH-DE as well as the Netherlands
eScience Center and the UK Software Sustainability Institute.

This work explicitly relies on the Netherlands eScience Center Guide and the CLARIAH Software Quality Guidelines.

To make use of these guides, implementing an institutional manual based on this is recommended. In many places,
possible or required choices are pointed out and should be made for a specific manual.

It is particularly recommended to adopt the Recommendations to encourage best practices in research software when-
ever starting a new project. Also, consider using the Software Sustainability Institute’s Software Management Plan.

This work is licensed under Creative Commons Attribution 4.0 International.

Contents: 1

https://www.cessda.eu/
https://www.clariah.nl/
https://de.dariah.eu/
https://esciencecenter.nl/
https://esciencecenter.nl/
https://www.software.ac.uk
https://guide.esciencecenter.nl/
https://github.com/CLARIAH/software-quality-guidelines
https://softdev4research.github.io/recommendations/
https://www.software.ac.uk
https://www.software.ac.uk/software-management-plans
https://creativecommons.org/licenses/by/4.0/


Technical Reference, Release 0.1

2 Contents:



CHAPTER 1

Developer Guidelines

1.1 Basics

All development should be made available publicly under open source licences.

1. Use version control right from the beginning of a new project.

• If in doubt, use Git.

• Implement a Code Hosting Policy.

• Use meaningful commit messages, cf. [ProGit] Sec. 5.2:

– Capitalised summary with a maximum of 50 characters followed by a blank line.

– Detailed but concise explanations in paragraphs or bullet points at 72 characters line length.

2. Use an appropriate OSI approved license.

• Decide on an appropriate license before you first commit.

• Ensure the license is compatible with all dependencies.

• If in doubt, choose APACHE-2.0 or EUPL-1.2.

• Add the text in a LICENSE.txt.

3. Maintain a README.

4. Document your software properly.

5. Use existing tooling to support development workflows.

6. Ensure maximal interoperability.

7. Ensure your software is usable and accessible.

8. Implement a release policy and keep a changelog.

9. Add a code of conduct in a CODE_OF_CONDUCT.md, like we do.

3

https://opensource.org/osd
https://git-scm.com/
https://xkcd.com/1296/
https://opensource.org/licenses
https://choosealicense.com/licenses/apache-2.0/
https://choosealicense.com/licenses/eupl-1.2/


Technical Reference, Release 0.1

10. Specify contribution policies in a CONTRIBUTING.md, like we do. A legitimate policy can be that external
contributions are not accepted and merged.

1.2 The README

The first thing users and other developers look at when first making contact with a repository is the README.md in
the repository’s root directory. Its purpose is to give a concise but comprehensive introduction to the project. It should
provide links to further (more detailed) documentation, websites or other background information. Depending on the
relevant ecosystem, specific guides or templates for READMEs exist.

The following basic information must be provided:

1. The project name

2. A short but meaningful descriptive summary of the repository

3. The maintenance status

The following questions must be answered:

1. What does the software do?

2. Who will use the software?

3. What are alternatives to the software, and how do they differ?

4. How can someone get started?

• Requirements

• Binary download location

• Build instructions with dependencies

• Installation instructions

• Quick start examples

• Link to full user documentation

5. How can others join the development?

• Coding styles used

• API design

• Toolchain and frameworks used

• Community communication platforms

• Link to developer documentation

• Test suite details

• Contribution guides

6. Release details and versioning

7. Who has contributed to the software?

8. Which license is used? In most cases a link to the LICENSE.txt is sufficient.

9. Who has to be acknowledged? I.e. who has played a significant role for the creating of the software? This can
e.g. include funding, research communities, or co-workers that are not part of the project but have given advice
and/or input to the development process.

4 Chapter 1. Developer Guidelines



Technical Reference, Release 0.1

1.3 Documentation

Documentation is fundamental to ensure usability and usefulness of the software. It must be stored along the code,
ideally in the repository’s docs folder. Basic documentation should also be included in the README.

Documentation is relevant in many forms, each of which should be addressed for different audiences with varying
degree of experience and knowledge.

1. User documentation: Include a documentation for end users, including e.g.

• Examples

• Tutorials

• How-Tos

• FAQs

• Screen-casts

• API documentation

2. Developer documentation: Provide instructions for developers.

• How to set up the environment.

• Dependencies, including

– Supported operating systems

– Required libraries

– External dependencies

• Requirements, e.g. hardware, architecture, CPU, RAM, disk space and network bandwidth.

• How to build the code.

• How to package the code.

Additionally, inline code documentation should be used as appropriate.

• Always adhere to the language’s standard or well established once such as the Google Style Guides.

• Document the why and not the what, cf. [CleanCode].

3. Administration documentation: Provide instructions for installation, configuration and maintenance, in par-
ticular when as a daemon (e.g. a micro service).

• Configuration instructions

• Start-up script (e.g. init or systemd)

• Monitoring setup, ideally through a monitoring endpoint

1.4 Tooling

In order to support an efficient development workflow and ensure a high degree of software quality the use of appro-
priate tooling is strongly recommended.

This should include:

1.3. Documentation 5

https://google.github.io/styleguide/


Technical Reference, Release 0.1

1. Using an appropriate code editor or IDE.

While the individual person should be free to choose the solution that best fits his or her need, the editor/IDE
should provide standard features such as syntax highlighting and code completion for all relevant languages.

Use EditorConfig to ensure consistency of code submitted by all developers. In case others can contribute to the
software as well, it is recommended to add the respective .editorconfig to the software’s repository.

2. Code linting within the editor, as pre-commit hooks and part of further automation should be used.

3. Unit testing to improve code quality and simplify future development.

4. Static code analysis to reduce common errors and improve overall quality by adhering to standards and best
practices.

5. A Continuous Integration solution that runs on every code commit to verify the test suite, lint code, perform
static analysis and more.

Popular choices for CI are:

• Travis CI

• GitLab CI

• Jenkins

1.5 Interoperability

1. Internationalisation principles must be applied to ensure future localisation.

2. Localisation of the software must be available in English and should be available in other relevant languages.

3. Provide an API.

4. Use federated authentication.

5. Provide full configuration examples.

6. Provide endpoints for monitoring (service status) and statistics (user request and hardware utilisation).

1.6 Changelog

1. Adopt a release policy.

2. Maintain a manually curated Changelog.

• Use a CHANGELOG.md, like ours.

• Structure in a descending order by version with release date.

• Add all changes applied in that version.

• Have an unreleased section at the top for the next release.

6 Chapter 1. Developer Guidelines

https://editorconfig.org/
https://travis-ci.org/
https://about.gitlab.com/gitlab-ci/
https://jenkins.io/
https://keepachangelog.com/en/1.0.0/


CHAPTER 2

Operational Guidelines

For a generic collection of IT Service Management documents, see e.g. [FitSM].

2.1 Basic Operational Guidelines

1. Maintain a proper up-to-date documentation.

2. Establish processes for recurring actions.

3. Automate as much as possible.

4. Implement and verify backups.

5. Monitor the infrastructure.

6. Consider software configuration management.

2.2 Infrastructure Documentation

1. Keep an up to date inventory of all infrastructure components used, including

• Actual physical hardware (servers, switches, racks, tapes, appliances etc.)

• Virtual machines

• Cloud and container infrastructure

• Storage solutions and instances

• Backup systems

2. Keep an inventory of all services that are offered and their dependencies with each other and the underlying
infrastructure.

3. Implement security.

7



Technical Reference, Release 0.1

4. Keep a record of incidents.

2.3 Documentation for (virtual) servers

Documentation for virtual servers should include the following information:

• Where is it?

• Location, e.g. rack number or visualisation infrastructure

• IP address(es)

• DNS name(s)

• What is it?

• Operating system

• Human readable purpose

• Who knows about it?

• Responsible system administrator

• Secondary system administrators

• Project manager

• Which services does it run?

For each service, list the following:

• Service name

• Ports

• Status verification

• Log file

• Configuration file(s)

• Data directories

• Dependencies

• How can it be fixed?

List possible procedures for emergencies, such as

• Whether to try rebooting or remounting something

• How to restore from backup

2.4 Security

Implement a good AAI and adhere to standards such as [Sirtfi] and [Snctfi]

8 Chapter 2. Operational Guidelines



Technical Reference, Release 0.1

2.5 Incidents and Postmortems

Record all outages including

• Which service was disrupted?

• What else was affected?

• Who was in charge of the recovery?

• When was the incident discovered?

• How and by whom?

• When has the incident begun?

• When was the incident mitigated?

• Who was informed and how?

• Has this ever happened before?

• Has sensitive data, such as user data or secrets, been compromised?

Particular importance should be applied to record all steps taken to mitigate the incident. These should include the
person, time and specifics of any action taken.

Security breaches and vulnerability exploits may need to be reported to authorities, in particular if sensitive and/or
(legally) protected data was (potentially) affected. Users must be informed appropriately, responsibly and quickly.

Finally, decide upon and implement measures to prevent repetitions.

2.5. Incidents and Postmortems 9



Technical Reference, Release 0.1

10 Chapter 2. Operational Guidelines



CHAPTER 3

Policy Recommendations

3.1 Code Hosting Policies

3.1.1 General Rules

Make sure to publish your code in a version control repository.

• There are a number of well-known commercial solutions, such as

– GitHub

– GitLab

– Bitbucket

They all offer some free options and using them has a number of advantages, e.g.

– Good and established usability

– High visibility of you code

– Low barrier for find-ability and re-use

– Good integration with other services and solutions

When using commercial and in particular external services, you must have a backup and data extraction strategy
in place, which ensures that you can always move to another solution.

• There are a number of possibilities to host your own solution

– The commercial solutions above.

– GitLab Community Edition

– Gogs

– Gitea

– gitolite

11

https://github.com/pricing
https://about.gitlab.com/gitlab-com/
https://bitbucket.org/product/pricing
https://gitlab.com/gitlab-org
https://gogs.io/
https://gitea.io/en-us/
http://gitolite.com/gitolite/index.html


Technical Reference, Release 0.1

3.1.2 Specific Solutions

On Site

• Be sure to implement all relevant operational procedures.

GitHub

When using GitHub, implementing a suitable policy is recommended. This should include the following considera-
tions.

Organisations

GitHub organisations can be used to group all repositories of an institution or a research project. It should be clearly
stated who is responsible for an organisation, ideally stated on the organisation’s GitHub Page.

Always ensure rights are managed by a sufficient number of people:

• At least two people should be owner of the organisation. It may be appropriate to have two owners from each
institution involved in the project.

• Create an institutional account. This account becomes owner of all organisations the institution is involved in
and makes sure access is granted to all appropriate individual employees.

Organisations should have a policy on who can be a member as well as how repository maintainers and maintenance
status are defined and communicated.

Backup

As GitHub is owned by a commercial company (the Microsoft Corporation), the service provided through GitHub is
subject to change through corporate development. It is highly recommended to set up an automated backup system, in
order to ensure that a copy of all code and metadata (including issues, wikis etc.) exists.

Features

Use the features provided by GitHub, such as issue labels, issue and pull-request templates etc.

3.2 Release policy

• Use semantic versioning.

• Provide releases as downloads.

• If applicable, provide binaries for all supported platforms.

• Have a roadmap.

• Consider providing releases via research repositories with citable references.

12 Chapter 3. Policy Recommendations

https://semver.org/


CHAPTER 4

Software Quality Checklist

4.1 General

• [ ] Does the software have a descriptive name?

• [ ] Is there a short high-level description of the software?

• [ ] Is the purpose of the software clear?

• [ ] Is the targeted audience of the software clear?

• [ ] Does it (and its dependencies) use OSI approved licenses?

• [ ] Is the software under version control?

• [ ] Is there a website for the software?

• [ ] Does the software have a release mechanism?

• [ ] Is the software available in packaged format or only sources?

• [ ] Are maintainer and development status clear, including contact information?

• [ ] Are the requirements listed and up to date?

• [ ] Is the interface responsive and accessible?

• [ ] Is copyright and authorship clear?

• [ ] Is there a contribution guide?

4.2 Documentation

• [ ] Is there an accessible getting started guide?

• [ ] Is there an accessible user guide?

• [ ] Is there a full user documentation?

13



Technical Reference, Release 0.1

• [ ] Does the user interface link to held references?

• [ ] Are there examples, FAQs and tutorials?

• [ ] Are known issues documented?

4.3 Development

• [ ] Is the development setup documented?

• [ ] Is the build mechanism documented?

• [ ] Does the build mechanism use a common single-command system (i.e. Maven)?

• [ ] Is the software API documented?

• [ ] Are all appropriate config options externalised and documented?

• [ ] Does the code allow internationalisation (i18n)?

• [ ] Is the software localised (l10n)? English is mandatory.

• [ ] Is there a test suite?

• [ ] Is test coverage above 80%?

4.4 Interoperability

• [ ] Are file formats standard compliant and documented?

• [ ] Is the API standard compliant?

• [ ] Does it provide a monitoring endpoint?

• [ ] Does it adhere to an interface style guide?

• [ ] Does it use existing authentication systems (OAuth2/eduGain)?

4.5 Administration

• [ ] Are software requirements such as operating system, required libraries and dependencies specified including
versions?

• [ ] Are hardware requirements for CPU, RAM, HDD, Network specified?

• [ ] Are there deployment instructions?

• [ ] Is there a comprehensive and fully documented example configuration?

• [ ] Is a start-up script provided?

• [ ] Are there troubleshooting guides?

14 Chapter 4. Software Quality Checklist



Glossary

These are some of the most important terms used throughout. See also GitHub Glossary.

• Collaborator – Someone with write access to the repository.

• Contributor – Someone who submits code to the repository, either directly or via pull-/merge-request.

• Developer – Anyone who writes code.

• Maintainer – The person responsible for feature development and deciding about contributions.

15

https://help.github.com/articles/github-glossary/


Technical Reference, Release 0.1

16 Chapter 4. Software Quality Checklist



Bibliography

[CleanCode] Robert C. Marton: Clean Code: A Handbook of Agile Software Craftsmanship, Prentice Hall PTR,
2008

[FitSM] ITEMO: FitSM – A free standard for lightweight ITSM, http://fitsm.itemo.org/, 2016

[ProGit] Scott Chacon, Ben Straub: Pro Git, https://git-scm.com/book/en/v2, Version 2.1.64, 2018-06-01

[Sirtfi] AARC: Security Incident Response Trust Framework for Federated Identity, https://aarc-project.eu/
policies/sirtfi/, 2015

[Snctfi] AARC: Scalable Negotiator for a Community Trust Framework in Federated Infrastructures https:
//aarc-project.eu/policies/snctfi/, 2017

17

http://fitsm.itemo.org/
https://git-scm.com/book/en/v2
https://aarc-project.eu/policies/sirtfi/
https://aarc-project.eu/policies/sirtfi/
https://aarc-project.eu/policies/snctfi/
https://aarc-project.eu/policies/snctfi/

	Developer Guidelines
	Basics
	The README
	Documentation
	Tooling
	Interoperability
	Changelog

	Operational Guidelines
	Basic Operational Guidelines
	Infrastructure Documentation
	Documentation for (virtual) servers
	Security
	Incidents and Postmortems

	Policy Recommendations
	Code Hosting Policies
	Release policy

	Software Quality Checklist
	General
	Documentation
	Development
	Interoperability
	Administration

	Glossary
	Bibliography

